

Readings

- Section 4.3.7 on page 195-200
- Example Example 4.5 on page 198

The Small-Signal Model

Kizito NKURIKIYEYEZU, Ph.D.

Readings are based on Sedra & Smith (2014), Microelectronic Circuits 7th edition.

YEZU, Ph.D. The Small-Signal Model

Background

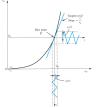
- Previous models have taught us how to find I_D and V_D in Fig. 1
- Now, consider the situation of V_{DD} has a small change ΔV_{DD} (Fig. 2).
- In this case, the current I_D changes by an incrementΔI_D and the diode voltage V_D changes by ΔV_D
- A small signal model—which uses a Maclaurin series expansion around a specific operating point—helps quickly find these incremental changes

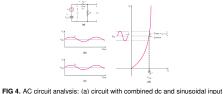
FIG 1. A simple diode circuit

FIG 2. When V_{DD} changes by ΔV_D

Small-Signal Model

- A small-signal model for a diode gives you a quick way to analyze nonlinear circuits.
- A diode is modeled as variable resistor.
- Whose value is defined via linearization of exponential model.
- Around bias point defined by constant voltage $drop V_D^{(0)} = 0.7 V$




FIG 3. The diode small-signal model.

²Bold reading section are mandatory. Other sections are suggested but not required readings

Small-signal model development

- Develop an equivalent circuit for a diode that is used when a small, time-varying signal is applied to a diode circuit.
- The total instantaneous circuit is divided into steady-state and time varying components, which may be analyzed separately and solved via algebra.
 - In steady-state, diode represented as Constant Voltage Drop Model (CVDM)
 - In time-varying, diode represented as resistor

Small-signal model development

voltages, (b) sinusoidal diode current superimposed on the guiescent current, (c) sinusoidal diode voltage superimposed on the guiescent value, and (d) forward-biased diode I -V characteristics with a sinusoidal current and voltage superimposed on the quiescent values Adapted from Neamen, D. A. (2009). Microelectronics: circuit analysis and

Small-Signal Model

■ Instantaneous voltage across the diode $V_D(t)$ is a sum of the dc voltage V_D and the time-varying signal $v_d(t)$ (Equation (1))

$$V_D(t) = V_D + v_d(t) \tag{1}$$

where $v_d(t)$ is a small signal voltage compared to V_D \blacksquare The corresponding current $i_D(t)$ through the diode is then (Equation (2))

$$i_D(t) = I_S \cdot e^{v_D/v_T} \tag{2}$$

■ Substituting Equation (1) in Equation (2) we get

The Small-Signal Model

$$i_D(t) = I_s \cdot e^{(v_0 + v_o)/V_\tau}$$

$$= I_s \cdot e^{v_o/V_\tau} \cdot e^{v_d/V_\tau}$$

$$= I_D e^{v_d/V_\tau}$$
(3)

Equation (3) can be approximated as Equation (4)

$$i_D(t) \approx I_D \left(1 + \frac{v_d(t)}{V_T} \right) = I_D + \frac{I_D}{V_T} v_d(t) \tag{4}$$

 \blacksquare Expressing $i_D(t)$ as Equation (5)

design (4th edition), New York; McGraw-Hill,

$$i_D(t) = I_D + i_d(t) \tag{5}$$

Where $i_d(t)$ is a small signal current (i.e., $i_d(t) \ll I_D$), then

$$i_d(t) = \frac{I_D}{V_T} v_d(t)^2 \tag{6}$$

 \blacksquare The incremental resistance or the small signal resistance r_d is defined as

$$r_d = \frac{V_T}{I_D} \tag{7}$$

1https://en.wikipedia.org/wiki/Taylor series

Kizito NKURIKIYEYEZU, Ph.D. ■ Since $v_d/v_T \ll 1$, and since $e^x \approx 1 + x$ when x is small¹, then

²The quantity relating the signal current i_d to the signal voltage v_d has the dimensions of conductance, mhos ((3)), and is called the diode small-signal

Small-Signal Model

- Approximations in Equation (4), Equation (5) and Equation (7) converts a nonlinear problem into a linear problem at the DC bias point, the quiescent point, or the Q point.
- This is the small-signal approximation. It is valid for signals whose amplitudes are smaller than about 5mV

FIG 5 A nonlinear diode circuit can be replaced by a linear resistor circuit under the small signal approximation

Small-Signal Model equivalent

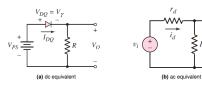


FIG 6. Equivalent circuity of a small signal model

Kizito NKURIKIYEYEZU, Ph.D

Mathematical viewpoint

$$\begin{split} i_{D} &= i_{D}(V_{D} + v_{d}) \\ &= i_{d}(V_{D}) + v_{d} \left. \frac{\partial i_{d}}{\partial v_{D}} \right|_{v_{d} = 0} \\ &= I_{D} + v_{D} \frac{1}{f_{d}} \\ &= I_{D} + i_{d}(t) \end{split} \tag{8}$$

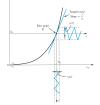


FIG 7. The diode small-signal model

Kizito NKURIKIYEYEZU, Ph.D

Kizito NKURIKIYEYEZU, Ph.D

The Small-Signal Model

Adopted from Neamen, D. A. (2009), Microelectronics; circuit analysis and design (4th edition). New York: McGraw-Hill.